
Escaping the
dependency trap
Reducing dependencies

Thorsten Brunzendorf

XP Days Germany 2023-10-05

1

2

Dependencies
at planning
and design time

3

Dependencies
at deployment
and run time

Charity Majors @mipsytipsy

4

Dependencies
as a measure
of org dysfunction

5

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Structure

• Team as unit of delivery
• Libraries

vs Remote APIs
• Internal = same organization but another team

vs External = another organization

6

External libraries

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

7

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Dependencies on external libraries
• mostly on open source libraries

Using open source libraries is common sense
and not much of a problem

… except for

Updating open source libraries

8

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Reasons for wanting to update
• new features
• bugs
• security issues
• end-of-support for version used

Reasons for not updating
• breaking changes
• conflicting indirect dependencies
• unwanted license models
• no new releases

9

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenges: breaking changes, conflicting indirect
dependencies, unwanted license models

• Risk of updating to a new version

keep dependencies up to date automatically
• e.g. by using Renovate or Dependabot
• do not let risks pile up
• let your pipeline find issues

create new releases and put them into production
• continuous deployment or at least every iteration
• schedule releases at regular intervals - even if there is no

customer demand

10

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge: no new releases
• Risk of dependency on not so well-maintained library

no new PRs? propose it yourself!
• give back and propose a PR for your problem

assess - isolate - remove
• stay away from libraries that are seldom used or have infrequent

releases
• don't let library-specific types contaminate your whole code -

encapsulate them and build your own abstractions
• remove or replace "risky" libraries

11

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

12

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Dependencies on internal libraries
• same org but maintained by other teams

Shared domain model (and logic)
• e.g. Shared Kernel

Shared infrastructure abstractions
• e.g. org specific core library

13

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge: multi-purpose org specific base lib
• “not invented here” syndrome
• often comes with unintended coupling
• paves the way to distributed monolith

stay away from multi-purpose org specific base libs
• if really needed use smaller single-purpose libs with minimal

dependencies
• never use it with APIs or as dependency for your own libs

14

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge: unclear responsibilities for maintenance
• shared library team has other priorities
• lifecycle often goes from mandatory use directly to

unmaintained deprecation

treat libraries as internal open source
• usage is optional
• prepare (and accept) contributions
• assess - isolate - remove
• update and release frequently

15

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Libraries in general

create and use SBOMs (software bill of materials)
• EU Cyber Resilience Act (proposed)
• CycloneDX (OWASP Foundation)
• SPDX (Linux Foundation)

16

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

17

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Dependencies on internal remote APIs
• Same org but maintained by other teams

Provider and consumer roles
• Upstream - Downstream

DDD context mapping
• Different types of relationships:

Partnership, Shared Kernel, Customer-Supplier, Conformist,
Anti-Corruption Layer, Open Host Service, Published Language,
Separate Ways

18

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge as consumer: Need to integrate an API
but it's not in production yet

• Use mock API
when you have an API spec
but provider is not implemented yet

• Use feature toggle
when provider implemented but not deployed and
released to production yet

19

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge as consumer: API changes unpredictably

• Implement Consumer Driven Contract Testing
to verify that changes are compatible

• Important: specify only attributes needed

20

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge as consumer: API changes unpredictably

• Use adapter as Anti Corruption Layer (ACL)
• Variant: ACL as separate deployment

• Use feature toggle
for switching between old and new API

• Both client versions implemented (Branch by abstraction)

21

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge as provider: Need to serve different
consumers

• Consider consumer-specific interfaces
• instead of 1 general interface for all
• can still use same implementation if appropriate

• Provide query-based API
• e.g. GraphQL or OData

22

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge as provider: Need to serve different
consumers

• Beware: Generic APIs mean more coupling
• Syntactic coupling is replaced with semantic coupling
• Note: Also CRUD APIs can be considered quite generic

23

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge as provider: Need to change API without
impacting consumers

• Make only compatible changes to API
• and make incompatible changes only if CDC tests succeed

• Provide breaking changes as new interface
• use versioning only as a last resort

24

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenges at runtime: Consumers depend on
provider’s operational quality and
provider depends on consumers’ load

Improve resilience
• Reduce negative runtime effects of dependencies
• As consumers:

Learn about runtime characteristics of providers
Leverage patterns like Retry and Circuit Breaker

• As providers:
Learn about actual consumers and their load
Implement load testing

• Both: Build crucial business knowledge

25

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenges at runtime: Consumer depends on
availability of provider

Switch to asynchronous interaction styles
(using events or messages)

• If response is not needed immediately to continue processing
• Removes runtime coupling from consumer to provider
• Replaces it with runtime coupling of both provider and

consumer to infrastructure (event or message broker)
• Changes direction of flow at runtime (provider plays active part)
• Reading data on demand is not possible - consumer needs to

build read model from events received (alternative: caching)

26

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge: close collaboration with other teams is
valuable but comes with high cognitive load

Define and publish team APIs
• Make assumptions explicit for other teams and team members

themselves

27

28

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge: close collaboration with other teams is
valuable but comes with high cognitive load

Limit dependencies in progress to 1

“When we had 2 or more items in process that needed coordinating
with other teams everything in the process took longer. ... we had a
fairly good handle on Work In Progress ... but it was Dependencies In
Progress that we needed to start limiting. ... By adding a new policy –
don’t start a new item with dependencies if there’s already one
in progress – we kept our flow of work smoother and our predictions
... much more useful.”
- Neil Vass

29

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge: close collaboration with other teams is
valuable but comes with high cognitive load

Don't change APIs in lockstep
• i.e. don’t change provider and consumer in same iteration
• it mostly does not work (other priorities or problems revealed

only when testing in integration)
• exception: when ensemble programming together with other

team on both sides

30

Examples for evolving APIs

Add new output attribute
1 Provider adds new attribute to response payload

Consumers must be able to ignore additional data (Postel’s law)
2 If needed consumers process new attribute

Remove input attribute
1 Provider removes attribute from request payload

Consumers still includes this attribute in request
Provider must be able to ignore additional data (Postel’s law)

2 Eventually consumers refrains from sending this attribute

31

Examples for evolving APIs (2)

Add new input attribute
1 Provider adds new optional attribute to request payload

but does not process any data yet or uses sensible default value
2 Later consumer sends new attribute - Provider does not change yet
3 When all consumers are ready, provider processes new attribute data

and declares it mandatory if needed (2nd deployment)

Delete output attribute
1 Provider declares attribute optional and returns default value
2 Consumers need to ignore this output attribute
3 Provider sends null or removes attribute completely

32

Examples for evolving APIs (3)

Renaming an attribute
• Renaming is not an atomic operation
• Composition of adding a new attribute and removing an existing attribute

1 Add new attribute and copy content from old attribute
2 Deprecate old attribute and

accept both new and old attribute, with precedence for new
3 Eventually ignore and then remove old attribute

33

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

34

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

External remote APIs (business partners or public)

What’s different?

• Consumers are less known to providers (and can
be numerous)

• Providers are less known to consumers (and less
approachable)

• Larger distance between consumers and
providers => more coupling, higher cost of change

35

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Challenge: Larger distance between consumers and
providers

• Consumer driven testing makes no sense here
• As providers: stabilize APIs

• invest (even more) in API ops and API experience
• As consumers: use an adapter / ACL
• Improving resilience is even more important

• invest in observability
• As providers: do not publish internal APIs to

external consumers

36

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Process dependencies -
to other teams

Examples:
• Hands-offs

from/to other teams
• Sign-offs

by other teams
or stakeholders

Some scenarios …

37

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Scenario: separate approval gate
QA team or
User Acceptance Test by Subject Matter Experts

• Include people or capability into your own team
• If not possible:
• Decouple deployment from release (toggles)
• Leverage QA team knowledge and let them lead

exploratory testing (without formal gate)

38

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Scenario: separate infrastructure team,
e.g. DBA team for central database

• Include people or capability into your own team
• If not possible:
• Tweak your architecture

• e.g. use application specific database
evolved together with application

• e.g. use document-oriented database
not maintained by DBA team

39

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Scenario: release train - aka: we need to deploy to
production together - it's the required process

• Decouple yourself technically from the release
train as much as possible

• Decouple deployment from release (again)
• Org hacks

• different processes to deploy hotfixes
or for critical vs non-critical changes

• clarify what are non-critical changes and make most of
your changes non-critical

40

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Scenario: "the business" says they do not need
frequent releases

• Continuous Delivery is a capability -
even if biz says it's not needed

• But: rollout security fixes, bug fixes,
technical changes

• Example: joint release of consumed API change
• No finger pointing, be humble, build trust

41

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Reducing process dependencies

• Goal: responsibility to deploy and/or release to
users is within team

“Autonomous teams are trusted by the organisation to “serve the
customers to support the organisation” rather than just “serve the
organisation”. There is an expectation of judgement by the team.
This is another way of saying they are expected to not just be order
takers.”
- Jason Yip

42

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Systems thinking: Are we optimizing our subsystem
(the team) and not the whole?

• Teams should be the unit of delivery
• But sometimes team structures are at odds

with your domain structure

Use ideas from DDD (bounded contexts) and from
Team Topologies (Stream-aligned teams)

"Knowing what changes together in the software is the key to
determining how teams should be organised." (Nick Tune)

43

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Systems thinking
• And sometimes team structures are at odds

with your current focus

Make teams more fluid
• Stability is important but stable teams are an illusion

=> see Dynamic Reteaming
• Decide what you want to invest in

and structure the people around that
• Don't bind job positions to teams - common in traditional orgs
• Keep key people and allow for easy switching

44

external
libraries

internal
libraries

external
remote APIs

internal
remote APIs

process dependencies

introduction

summary

Summary

• Question new dependencies
• Reduce existing dependencies
• Do not accept the status quo
• Dependencies are never just technical
• No finger pointing, be humble, build trust

45

SAFe 6.0

46

Thank you Creating the digital future together.

Architecture

Code

Knowledge
& Wishes

Usage &
Operation

Testing &
Feedback

Thorsten Brunzendorf
Senior IT Consultant

codecentric AG
Sophie-Germain-Straße 12
90443 Nürnberg

thorsten.brunzendorf@codecentric.de

47

Reference
Charity Majors https://speakerdeck.com/charity/compliance-and-regulatory-standards-are-not-incompatible-with-modern-development-best-practices
Consumer Driven Contract Testing https://docs.pact.io/
CycloneDX (OWASP Foundation) https://cyclonedx.org/
Daniel Terhorst-North https://dannorth.net/2023/03/02/but-what-about-the-bau-work/
Daniel Westheide https://www.innoq.com/en/blog/2016/11/the-perils-of-shared-code/
Gene Kim https://itrevolution.com/articles/on-coordination-costs-moving-a-couch-and-painting-a-room
Heidi Helfand https://www.heidihelfand.com/dynamic-reteaming/
Jason Yip https://jchyip.medium.com/key-practice-aligned-autonomous-cross-disciplinary-teams-d73c1cddc352
John Cutler https://www.linkedin.com/feed/update/urn:li:activity:7089500418510131200/
Martin Fowler https://martinfowler.com/articles/enterpriseREST.html
Neil Vass https://neil-vass.com/minimum-viable-estimation-part-2/
Nick Tune https://medium.com/nick-tune-tech-strategy-blog/visualising-sociotechnical-architecture-with-ddd-and-team-topologies-48c6be036c40
Oliver Drotbohm http://odrotbohm.de/2016/10/evolving-distributed-systems/
SAFe 6.0 https://scaledagileframework.com/whats-new-in-safe-6-0/
SPDX (Linux Foundation) https://spdx.dev/
Team API Template https://github.com/TeamTopologies/Team-API-template
Vladik Khononov https://speakerdeck.com/vladikk/balancing-coupling-in-distributed-systems

Cobweb photo by Pierre Bamin on Unsplash https://unsplash.com/de/fotos/QdNen0rPe4E
Jenga photo by Michał Parzuchowski on Unsplash https://unsplash.com/de/fotos/geNNFqfvw48
All other photos by Thorsten Brunzendorf

https://speakerdeck.com/charity/compliance-and-regulatory-standards-are-not-incompatible-with-modern-development-best-practices
https://docs.pact.io/
https://cyclonedx.org/
https://dannorth.net/2023/03/02/but-what-about-the-bau-work/
https://www.innoq.com/en/blog/2016/11/the-perils-of-shared-code/
https://itrevolution.com/articles/on-coordination-costs-moving-a-couch-and-painting-a-room
https://www.heidihelfand.com/dynamic-reteaming/
https://jchyip.medium.com/key-practice-aligned-autonomous-cross-disciplinary-teams-d73c1cddc352
https://www.linkedin.com/feed/update/urn:li:activity:7089500418510131200/
https://martinfowler.com/articles/enterpriseREST.html
https://neil-vass.com/minimum-viable-estimation-part-2/
https://medium.com/nick-tune-tech-strategy-blog/visualising-sociotechnical-architecture-with-ddd-and-team-topologies-48c6be036c40
http://odrotbohm.de/2016/10/evolving-distributed-systems/
https://scaledagileframework.com/whats-new-in-safe-6-0/
https://spdx.dev/
https://github.com/TeamTopologies/Team-API-template
https://speakerdeck.com/vladikk/balancing-coupling-in-distributed-systems
https://unsplash.com/de/fotos/QdNen0rPe4E
https://unsplash.com/de/fotos/geNNFqfvw48

