Extreme

Continuous

http://unruly.co/
Marketing Technology
12-120 in under 2 years

3-30 tech team

Talk Structure

How we work
Why it works

Scaling Infrastructure

Scaling Development

Careful & Considered
Approach

Airight, this probably won't explode... -

How we work...

extreme
rogramming

explained

EMBRACE CHANGE

Kent Beck

Feedback Loops

Pairing
DD
Customer
Deploy

lterations & Release Planning

"Plan releases once a quarter. Plan iterations more frequently”
(XP Explained)

We do none of these things

Goal

Deliver value as quickly as possible

Minimise time from conception to value

CONTINUOUS
DELIVERY

JEz HUMBLE
DAviD FARLEY

Foreword by Martin Fowler

Value Stream

Product Product

. Product ! Final testing
opportunity | planning and Development Release
assassment dngouely estimation bl L Wl

3dayg 1jweek Qdays 7 weeks 1|week , 2 —
Value-added time
Elapsed time J L | |] J L
1week 10 days 3 days Sdays 2days

Delivery, JezHumble & David Farley)

(Continuous

Accelerated Value Stream

Decision Feedback Acceptance
stakeholder customer customer
“I'd say
that's lunch’
09:00 Q \ @ 11:30
Deploy to Prod Deploy to Frod

Opportunity Cost Estimate
e.g. ad campaign developer

Implementation Starts

Discussion developer pair

developer + customer

Normal Value Stream

Feedback Acceptance Feedback
customer custamer customer

Deploy [Deploy [Deploy
to Prod to Prod to Prod

9h
T day
1st @ 14th
Prioritisation
stakeholders
Discussion + Cost Discussion + Cost

developer + customer developer + customer

Definition of Done
Whentestspass

When-integrated
When-deptoyabte buitd
When-depleyed

When measurably delivering value

Deploy Pipeline

Version control

UAT

Configure environment
S;;?;@ Deploy binaries
Developers deploymenis Smoke test
See code melrics
v and test failures v * _
Commit stage Acceptance stage Capacity stage "
Compile Configure environment Configure environment
Commit tests Cleploy binaries Deploy binaries
Assemble Smoke test Smoke test
Code analysis Acceptance tests Run capacity tests
e ———————— ﬁ S —
Production
Operations . . |
perform Configure environment
push-button Deploy binaries
releases Smoke test
reports
binaries reports reports
y metadata binaries | ymetadata Hityaiec —————— ¥ metadata

Artifact repository

Delivery, Jez Humble & David Farley)

(Continuous

Waterfallin a Tube

Gate Metaphor

Automate all the Things

Acceptance
Integration
Component/Unit
Performance

Move Checks Post-Deploy

Live with broken

Monitoring
What's Broken & Why?
Fix rapidly
NagDD
Constantly running tests against production

TDD-Deployment

g
Feedback
\A
/\} 7
/
Deploy B <<— GEEEE <<—

74

/

Synchronous

Deploy & Feedback
Inform next change
Motivation to keep deploy fast

4
_ -

Who does CI?

No Cl Server

No Branching

No long lived feature branches
No pushed branches
Real Cl
Integrate with users and data

Continuous Isolation

Promotion

Business Dev decides when to deploy

Feature Toggles

UAT in Production

Global Org
Production-like
Performance feedback early
Canary deploys

Accessible Customer

Essential

Harder across multiple time-zones

Continuous Pelivery Deployment
e e camble of heine dentoned

Every push is deployed

Even after beer o'clock

SL\OU.\A\ 8 JQ?[D& N G
(:r‘lckmj af bSpn?
l

IYES

L
BQL T womed Hr‘ak

\
‘b wov \wbE
Df:)i'\ tes 5‘? \

Eororadinloper @oenyuieber

Roll Back Forward

https://www.flickr.com/photos/astridphotography/495081606

People & Culture

Siloing is Bad
[

..f S

iyl

Operations

U

... ...

fr e

Froduct Developers Testers
o

o '. d ()

iy

Customers Support Testers

Split by Prejeet Product

o o .o
OIu ® OIu © OIu o

LA LASEE LA B L

Froduct A Froduct B Product C

Generalists over Specialists

Specialists help generalists do better

T T Y
W W W

FProduct A Froduct B FProduct C

Product Team

Didn't work - became a bottleneck

Replaced with Product Strands

Collective Ownership

Code
Tests

Requirements

Ops
Support

Devs on Call

Freedom and responsibility

Pair Programming

Real-time code review

Self-improvement

Retrospectives
20% Time
Dev Tasks

Questions
so far?

Infrastructure

Challenges

1-100 Servers

Infrastructure as Code

DD
Pairing
Tight feedback loop

Making Snowflakes Disposable

More frequent machine death during growth

Continuous Disposal

Caught out by assuming servers were rebuildable - they weren't

First Day

Any project's first step - deploy "Hello World"

Deploy something, iteratively improve

TDD (sort of)

Unit-testing less useful

Acceptance testing much more informative

Acceptance Testing

@test "apache should redirect to https" {
run curl http://analytics.unrulymedia. com/
["$status" -eq O]
echo "$output" \

| grep -q '< Location: https://analyti.

Module Testing

@RunWith(ServerSpec.class)
public class AnalyticsWeb {{
describe(service("httpd"), it -> {
it.should(be.enabled);
it.should(be.running);

1

describe(port(80), it -> {
it.should(be.listening);

1

describe(port(443), it -> {
it.should(be.listening);
3

1

Shared Infrastructure

Assumed care; Ensured suffering

Cross-team collaboration

DevOps Borat @DEVOPS _BORAT - 15 Feb 2013
) Devops is intersection of lover of cloud and hater of wake up at 3 in morning.
b,

Expand

Reduce Variance, Increase Mean

Homogenous systems are easier to reason about.

MTBF becomes less important than MTTR

Phoenix Workstations

Cronned Code Deletion

Dev Scaling

Challenges

Existing Product Boundaries

https://www.flickr.com/photos/nojuanshome/11680685284/in/photolist-iNbyMA-39Jxq-9J5Cv-bxKVb-74HkbS-iN9KWe-a7yorD-cBqJ-oEVTw-4kCGYW-D9uKx-8sUQni-6NjCCc-6HC8Ss-4a3Lma-amPJE1-amPJRL-gyNic-63RozW-24LZFN-e8XPwJ-cjURRQ-6y8pPe-PD1NJ-4rktup-4a6FTC-fNZnHW-bGsBsg-7krDyh-64kjyp-4a7QcG-355sft-diycgV-fTZXYT-9SWBDz-a8JtZW-4yXvsJ-7XsjAg-ebfh2W-aPoLr-EdRAU-9XbC-nt76C-7jcvPL-YgX8-7LsVP-6aGNmZ-ku3Hda-av8hFt-avpg56

Conway's Law

"organizations which design systems ... are constrained to produce designs which are copies of
the communication structures of these organizations"

Take advantage

Split on Demand

You know least when you start

Monolith vs MicroServices

Deploy speed vs Dependency Hell

Single Repo vs Versioning

Cross-Pollination

Internal tech-talks
Team rotation
Team leadrotation

https://www.flickr.com/photos/rachel_s/4039972929/in/photolist-79ZVcF-2WoVd-zg5V-gnX2H-48AnK-8k9UWx-fsJyHz-6injVc-dfyMpn-7YTPKB-7V1XuQ-7V1Y6Y-cEVaS-51mwC1-bD5gxn-7EFrob-9MQkSL-2atXGZ-7UDraF-dW7MFn-eVQEze-NZzu-4tCzx-5gsUVT-6e4MhN-NP9n-eb858G-7RxYEu-w6ryP-dTC47-EwKDX-cpFauW-7UXHJV-7UXKJZ-7V1VNy-7UXFM2-7V1V49-FsbFb-b4tdxv-b4te7F-b4teEX-Fhu25-a9qJn5-4ELgLM-bEBxCp-baD1Kp-a9diiJ-7RLzVc-Euw9L-e3edc8/

https://www.flickr.com/photos/gadl/89650415/in/photolist-8VtWP-8VwbC-2aoWay-2aoWf7

Continuous Investment

Deploy Speed & Reliability

@QuarantineRule

0.1% failure rate is annoying with 100 tests

0.1% Failure rate is impossible with 10,000 tests

Collective Ownership
VS
Freedom

Unusual things

Continuous Deployment
Synchronous Deploy

No Cl Server

Cronned Code Deletion

Key Short pipeline

g Fast feedback
PO' nl'.S Early value

Continuous Delivery
and DevOps
experience reports

edited by Steve Smith and Matthew Skelton

Thanks for

Listening

Heckle us on Twitter
@prObablyfine @benjiweber

Any Questions?

We're hiring —
talent@unrulymedia.com

