
Extreme
Continuous
Delivery
at Unruly

Alex Wilson - @pr0bablyfine
Benji Weber - @benjiweber

http://unruly.co/

Marketing Technology

12-120 in under 2 years

3-30 tech team

Talk Structure
How we work

Why it works

Scaling Infrastructure

Scaling Development

Careful & Considered
Approach

How we work…

Feedback Loops

Pairing

TDD

Customer

Deploy

Iterations & Release Planning

"Plan releases once a quarter. Plan iterations more frequently"

(XP Explained)

We do none of these things

Goal

Deliver value as quickly as possible

Minimise time from conception to value

Value Stream

 (Continuous

Delivery, Jez Humble & David Farley)

Accelerated Value Stream

Normal Value Stream

Definition of Done

When tests pass

When integrated

When deployable build

When deployed

When measurably delivering value

Deploy Pipeline

 (Continuous

Delivery, Jez Humble & David Farley)

Waterfall in a Tube

Gate Metaphor

Automate all the Things

Acceptance

Integration

Component/Unit

Performance

…

Move Checks Post-Deploy

Live with broken

Monitoring

What's Broken & Why?

Fix rapidly

NagDD

Constantly running tests against production

TDD-Deployment

Synchronous

Deploy & Feedback

Inform next change

Motivation to keep deploy fast

Who does CI?

No CI Server

No Branching

No long lived feature branches

No pushed branches

Real CI

Integrate with users and data

Continuous Isolation

Promotion

Business Dev decides when to deploy

Feature Toggles

UAT in Production

Global Org

Production-like

Performance feedback early

Canary deploys

Accessible Customer

Essential

Harder across multiple time-zones

Continuous Delivery Deployment

Every build is capable of being deployed

Every push is deployed

Even after beer o'clock

Roll Back Forward

"Forward Roll" by Astrid Photography.

https://www.flickr.com/photos/astridphotography/495081606

People & Culture

Siloing is Bad

Split by Project Product

Generalists over Specialists

Specialists help generalists do better

Product Team

Didn't work - became a bottleneck

Replaced with Product Strands

Collective Ownership

Code

Tests

Requirements

Ops

Support

Devs on Call

Freedom and responsibility

Pair Programming

Real-time code review

Self-Improvement

Retrospectives

20% Time

Dev Tasks

Questions
so far?

Infrastructure
Challenges

1-100 Servers

Infrastructure as Code

TDD

Pairing

Tight feedback loop

Making Snowflakes Disposable

More frequent machine death during growth

Continuous Disposal

Caught out by assuming servers were rebuildable - they weren't

First Day

Any project's first step - deploy "Hello World"

Deploy something, iteratively improve

TDD (sort of)

Unit-testing less useful

Acceptance testing much more informative

Acceptance Testing
@test "apache should redirect to https" {

 run curl http://analytics.unrulymedia.com/

 ["$status" -eq 0]

 echo "$output" \

 | grep -q '< Location: https://analyti…

}

Module Testing
@RunWith(ServerSpec.class)

public class AnalyticsWeb {{

 describe(service("httpd"), it -> {

 it.should(be.enabled);

 it.should(be.running);

 });

 describe(port(80), it -> {

 it.should(be.listening);

 });

 describe(port(443), it -> {

 it.should(be.listening);

 });

}}

Shared Infrastructure

Assumed care; Ensured suffering

Cross-team collaboration

Reduce Variance, Increase Mean

Homogenous systems are easier to reason about.

MTBF becomes less important than MTTR

Phoenix Workstations

Cronned Code Deletion

Dev Scaling
Challenges

Existing Product Boundaries

"River & Bridge" by John Gateley

https://www.flickr.com/photos/nojuanshome/11680685284/in/photolist-iNbyMA-39Jxq-9J5Cv-bxKVb-74HkbS-iN9KWe-a7yorD-cBqJ-oEVTw-4kCGYW-D9uKx-8sUQni-6NjCCc-6HC8Ss-4a3Lma-amPJE1-amPJRL-gyNic-63RozW-24LZFN-e8XPwJ-cjURRQ-6y8pPe-PD1NJ-4rktup-4a6FTC-fNZnHW-bGsBsg-7krDyh-64kjyp-4a7QcG-355sft-diycgV-fTZXYT-9SWBDz-a8JtZW-4yXvsJ-7XsjAg-ebfh2W-aPoLr-EdRAU-9XbC-nt76C-7jcvPL-YgX8-7LsVP-6aGNmZ-ku3Hda-av8hFt-avpg56

Conway's Law

"organizations which design systems ... are constrained to produce designs which are copies of

the communication structures of these organizations"

Take advantage

Split on Demand

You know least when you start

Monolith vs MicroServices

Deploy speed vs Dependency Hell

Single Repo vs Versioning

Cross-Pollination

Internal tech-talks

Team rotation

Team lead rotation

"Pollen" by nutmeg66

https://www.flickr.com/photos/rachel_s/4039972929/in/photolist-79ZVcF-2WoVd-zg5V-gnX2H-48AnK-8k9UWx-fsJyHz-6injVc-dfyMpn-7YTPKB-7V1XuQ-7V1Y6Y-cEVaS-51mwC1-bD5gxn-7EFrob-9MQkSL-2atXGZ-7UDraF-dW7MFn-eVQEze-NZzu-4tCzx-5gsUVT-6e4MhN-NP9n-eb858G-7RxYEu-w6ryP-dTC47-EwKDX-cpFauW-7UXHJV-7UXKJZ-7V1VNy-7UXFM2-7V1V49-FsbFb-b4tdxv-b4te7F-b4teEX-Fhu25-a9qJn5-4ELgLM-bEBxCp-baD1Kp-a9diiJ-7RLzVc-Euw9L-e3edc8/

State

"Queue" by Alexandre Duret-Lutz

https://www.flickr.com/photos/gadl/89650415/in/photolist-8VtWP-8VwbC-2aoWay-2aoWf7

Continuous Investment

Deploy Speed & Reliability

@QuarantineRule

0.1% failure rate is annoying with 100 tests

0.1% failure rate is impossible with 10,000 tests

Collective Ownership
vs

Freedom

Continuous Deployment
Synchronous Deploy

No CI Server
Cronned Code Deletion

Unusual things

Short pipeline
Fast feedback

Early value

Key
Points

Thanks for
Listening

Heckle us on Twitter
@pr0bablyfine @benjiweber

Any Questions?
We're hiring –

talent@unrulymedia.com

